Unsupervised Authorial Clustering Based on Syntactic Structure

نویسندگان

  • Alon Daks
  • Aidan Clark
چکیده

This paper proposes a new unsupervised technique for clustering a collection of documents written by distinct individuals into authorial components. We highlight the importance of utilizing syntactic structure to cluster documents by author, and demonstrate experimental results that show the method we outline performs on par with state-of-the-art techniques. Additionally, we argue that this feature set outperforms previous methods in cases where authors consciously emulate each other’s style or are otherwise rhetorically similar.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Dimensional Unsupervised Active Learning Method

In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...

متن کامل

Unsupervised Relation Disambiguation with Order Identification Capabilities

We present an unsupervised learning approach to disambiguate various relations between name entities by use of various lexical and syntactic features from the contexts. It works by calculating eigenvectors of an adjacency graph’s Laplacian to recover a submanifold of data from a high dimensionality space and then performing cluster number estimation on the eigenvectors. This method can address ...

متن کامل

Structured Generative Models for Unsupervised Named-Entity Clustering

We describe a generative model for clustering named entities which also models named entity internal structure, clustering related words by role. The model is entirely unsupervised; it uses features from the named entity itself and its syntactic context, and coreference information from an unsupervised pronoun resolver. The model scores 86% on the MUC-7 named-entity dataset. To our knowledge, t...

متن کامل

Comparison Between Unsupervised and Supervise Fuzzy Clustering Method in Interactive Mode to Obtain the Best Result for Extract Subtle Patterns from Seismic Facies Maps

Pattern recognition on seismic data is a useful technique for generating seismic facies maps that capture changes in the geological depositional setting. Seismic facies analysis can be performed using the supervised and unsupervised pattern recognition methods. Each of these methods has its own advantages and disadvantages. In this paper, we compared and evaluated the capability of two unsuperv...

متن کامل

Unsupervised Relation Disambiguation Using Spectral Clustering

This paper presents an unsupervised learning approach to disambiguate various relations between name entities by use of various lexical and syntactic features from the contexts. It works by calculating eigenvectors of an adjacency graph’s Laplacian to recover a submanifold of data from a high dimensionality space and then performing cluster number estimation on the eigenvectors. Experiment resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016